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The available experimental data on PbS, PbSe, and PbTe indicate that the valence- and conduction-band 
extrema of these semi-conductors occur at the L point of the Brillouin zone. The nearly-free-electron model 
predicts that the valence and conduction states in the vicinity of the forbidden gap at L each consist of three 
simple spin-degenerate bands. These bands interact strongly with one another and are relatively well isolated 
from other bands at L. The forms of the dispersion relations, £(k) , for these bands are determined using their 
symmetry and k-P perturbation theory, and depend strongly on their order and spacing. The conduction-
and valence-band extrema may be either anisotropic, with small, highly concentration-dependent transverse 
masses, as found in PbTe, or more nearly isotropic, as found in PbS. PbSe is thought to be an intermediate 
case. The theoretical variation with carrier concentration of the cyclotron masses and extremal cross-
sectional areas of the Fermi surface is derived from k*P perturbation theory for a simple model of the band 
structure in PbTe. This model is found to be in good agreement with most of the transport data on PbTe. 
However, the g factor for the valence band of PbTe, deduced from measurements of the Shubnikov-de Haas 
effect, is in definite disagreement with the predictions of the simple model, and a consideration of all six bands 
is necessary in order to obtain complete agreement with experiment. It appears that the band edge structure 
of PbSe and PbS are similar to that of PbTe with only a difference in the spacing of the various valence and 
conduction bands. 

TH E band-edge structure of the lead salts PbS, 
PbSe, and PbTe has been the subject of con

siderable experimental work.1 However, until recently, 
there has not been sufficient detailed information avail
able on the various band parameters involved to yield 
a clear picture of the band-edge structure of these 
materials. There now exist data on de Haas-van Alphen 
oscillatory magnetic susceptibility,2 Shubnikov-de Haas 
oscillatory magnetoresistance,3"5 Azbel-Kaner cyclo
tron resonance,6-7 interband magneto-optical absorp
tion,8 and on other optical and transport phenomena in 
these compounds.9-12 I t is the purpose of the present 
work to consider various models of the band-edge struc
ture of the lead salts and to compare the predictions of 

* Operated with support from the U. S. Air Force. 
1 We do not attempt a complete reference list but cite only that 

work which has been used directly in the present investigation. 
Many references are contained in the review article by W. W. 
Scafilon, Solid State Phys. 9, 83 (1959), and in the proceedings of 
previous International Semiconductor Conferences. 

2 P. J. Stiles, E. Burstein and D. N. Langenberg, Phys. Rev. 
Letters 6, 667 (1961); J. Appl. Phys. Suppl. 32, 2174 (1961). 

3 K. F. Cuff, M. R. Ellett and C. D. Kuglin, J. Appl. Phys. 
Suppl. 32, 2179 (1961); Proceedings of the International Conference 
on the Physics of Semiconductors, Exeter (The Institute of Physics 
and the Physical Society, London, 1962), p. 316. 

4 M. R. Ellett and K. F. Cuff, Bull. Am. Phys. Soc. 8, 601 (1963). 
5 R. S. Allgaier, B. B. Houston, and J. R. Burke, Bull. Am. Phys. 

Soc. 8, 517 (1963). 
6 P. J. Stiles, E. Burstein, and D. N. Langenberg, in Proceedings 

of the International Conference on the Physics of Semiconductors, 
Exeter (The Institute of Physics and the Physical Society, London, 
1962), p. 577. 

7 R. Nii, J. Phys. Soc. Japan 18, 456 (1963); 19, 58 (1964). 
8 D. L. Mitchell, E. D. Palik, J. D. Jensen, R. B. Schoolar, and 

J. N. Zemel, Phys. Letters 4, 262 (1963), and to be published. 
9 R. S. Allgaier, J. Appl. Phys. Suppl. 32, 2185 (1961). 
10 H. R. Riedl, Phys. Rev. 127, 162 (1962). 
11 J. R. Dixon and H. R. Riedl, in Proceedings of the International 

Conference on the Physics and Semiconductors, Exeter (The Insti
tute of Physics and the Physical Society, London, 1962), p. 179. 

12 R. B. Schoolar, Bull. Am. Phys. Soc. 8, 516 (1963). 

the different models with the available data. In as 
much as possible, we shall follow the logical arguments 
which have led us to the models discussed below, in
cluding the assumptions which have been made. The 
approach which we have used combines a nearly free 
electron picture, which determines the symmetry and 
some general properties of the band functions of inter
est, with k*P perturbation theory,13 which determines 
the band parameters to be compared with experiment. 
This approach results in a parameterized model of the 
valence and conduction band extrema. The parameters 
involve the relative spacings of the bands considered, 
and the momentum matrix elements between these 
bands. The relative spacings and order of the bands are 
adjusted to obtain reasonable agreement with the ex
perimental data, and the models considered are those 
which provide this agreement. 

In Sec. I, the symmetry and number of interacting 
bands in the vicinity of the forbidden gap is determined 
from the nearly-free-electron picture. Using this infor
mation, one can obtain the k«P interactions allowed by 
symmetry.14 The possible order of the bands in question 
is discussed and the number of possible arrangements is 
considered. In Sec. I I , the predictions of the various 
arrangements are considered in the light of the experi
mental results. A direct allowed-gap four-band model is 
presented and approximated to a two-band model. The 
transport properties of the latter model are obtained and 
found to agree with the experimental results in PbTe 
and PbSe. The g-factor predictions of this model, 
however, are found to be in disagreement with experi-

13 E. O. Kane, Phys. Chem. Solids 1, 82 (1956). 
14 A partial treatment of this problem has been given by G. L. 

Bir and G. E. Pikus, Fiz. Tverd. Tela 4, 2090, 2252 (1962) 
[English transl.: Soviet Phys.—Solid State 4, 1530, 1640 (1963)]. 
These authors neglected the effects of nonparabolicity, which are 
important, and reached conclusions in disagreement with ours. 
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FIG. 1. The low lying states at L in the nearly-free-electron 
model for a face-centered cubic lattice. The approximate free-
electron energies for the lead salts are shown along with a schematic 
representation of the crystal field and spin-orbit splittings. 

ment. I t is shown that a more complicated multiband 
model is necessary to account for the observed trans
port properties and g factors. In Sec. I l l , data on PbS, 
PbSe, and PbTe are compared with the band structure 
models considered. 

I. GENERAL PROPERTIES OF THE VALENCE AND 
CONDUCTION BANDS IN PbS, PbSe, AND PbTe 

All of the experimental data which we have considered 
seem to be consistent with a model in which the principle 
conduction- and valence-band extrema in all three com
pounds PbS, PbSe, and PbTe, are located at the L point 
(111 edge) of the Brillouin zone. 

For a face-centered cubic lattice, the low lying states 
at L in the nearly-free-electron model with and without 
spin-orbit interactions are shown schematically in Fig. 
I.15 The lowest set of states arise from the two plane 
waves of wave vector k=dz27r/a(l /2 1/2 1/2), the 
central set from the six plane waves of wave vector 
k=dz2w/a(i/2 1/2 3/2) and cyclic permutations, and 
the highest set from the six plane waves of wave vector 

15 For a discussion of the energy bands for free electrons without 
spin-orbit coupling in a face-centered cubic lattice, see for example, 
H. Jones, The Theory of Brillouin Zones and Electronic States in 
Crystals (North Holland Publishing Company, Amsterdam, 1960). 

TABLE I. Symmetry properties of the plane-wave band func
tions in the vicinity of the atomic sites. 

Cation (Pb) Anion (S, Se, Te) 

L*+(Li) 
LC(U) 

Li,6
+(Lt) 

L4,5 (Lz) 

s type 
i>type 

d type 

^ type 

p type 
s type 

p type 

d type 

k=±27r /a (3 /2 3/2 1/2) and cyclic permutations. In 
the free-electron approximation, the energy separation 
of these states is AE=2fi2/2m(27r/a)2c^S eV for PbS, 
PbSe, and PbTe, where a is the lattice spacing. The sym
metries of the states into which these plane-wave states 
split under the perturbation of the pseudopotential or 
crystal field is determined group theoretically and is 
shown in Fig. 1. Since Fig. 1 is schematic, the order 
shown is not intended to imply that this is necessarily 
the order of the bands in the actual crystals, except that 
we expect the central set of bands to lie near the for
bidden gap. In Fig. 1, the L6 states are doubly degener
ate with spin, and the L± and L5 states are degenerate 
with each other by time reversal. Consequently, all the 
bands at L are doubly degenerate. Since the crystal 
structure of PbS, PbSe, and PbTe possesses inversion 
symmetry, this spin degeneracy is maintained through
out the Brillouin zone. Therefore, we need only consider 
simple spin-degenerate bands at L. The result is that 
we expect six simple spin-degenerate bands of sym
metries shown in Fig. 1 to lie in the vicinity of the for
bidden gap. Of these, three belong to the conduction 
band and three belong to the valence band. 

Let us now consider the possible order of these six 
bands at L. There are 61= 720 possible different arrange
ments. Fortunately, many of these can be eliminated by 
our assumption that the lead salts are direct band-gap 
semiconductors with their valence and conduction ex
trema at the L point, since many arrangements result 
in overlapping valence and conduction bands or in 
band extrema not at the L point. Also, it seems reason
able to eliminate all arrangements in which the band 
gap lies intermediate between two states split by spin-
orbit interactions. This means that, since the valence 
and conduction bands must consist of exactly three 
bands each, the two pairs of spin-orbit split states lie 
on opposite sides of the forbidden gap (this reduces the 
number of possible arrangements from 720 to 144). 
Next, there is evidence that the optical transition across 
the gap is allowed in all three compounds so that the 
valence and conduction extrema must be states of 
opposite parity (reduction 144 to 112). 

Since this is still too many to consider in detail, 
further assumptions must be made. In order to do this, 
we need more detailed information concerning the six 
bands in question. In the vicinity of the atomic sites, the 
band states can be considered to be composed of the 
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FIG. 2. Possible ar
rangements of the en
ergy-band states at L 
in the vicinity of the 
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valence states of the free atoms. The general properties 
can be obtained from the symmetry of the band states 
in the vicinity of the atomic sites. Taking the origin to 
be at the Pb site, the results for the states of Fig. 1 are 
given in Table I. The two lowest lying states of Fig. 1 
will be composed, in a tight binding model, of anion and 
cation s functions. The L6

+(Li) state should be mostly 
cation s type, and the Z6~(L2

/) state should be mostly 
anion s type. The valence- and conduction-band states 
should then be mostly p type. The spin-orbit split L3 
state should be made up mostly from anion p functions 
while the spin-orbit split L3' state should be made up 
mostly from cation p functions. Furthermore, the L6 

functions transform like m ;==bj while the Li and Z,5 
functions transform like wy==bf.16 Since the normal 
order, where the wy=±f state lies above the wy= in
state, seems to be realized in all semiconductors, with 
the possible exception of ZnO,17 we expect the L±,§+(Lz) 
state to lie above the La+(Lz) state and the Li,f~(Lz) 
state to lie above the Lf(Ls) state. This reduces the 
number of possible arrangements by a factor of 4, 
leaving us with 28. Again, in the tight binding model we 
should expect the anion p states to lie below the cation 

16 See for example, G. F. Koster, J. O. Dimmock, R. G. Wheeler, 
and H. Statz, Properties of the Thirty-Two Point Groups (MIT 
Press, Cambridge, Massachusetts, 1963). 

!7D. G. Thomas, Phys. Chem. Solids 15, 86 (1960); J. J. 
Hapfield,*Wtf..l5,97 (1960). 

p states, so that the L% spin-orbit split state should be
long to the valence band and the Z,3' spin-orbit split 
state to the conduction band. The positions of the 
L6+(Z,i) and LfiLi) states are undetermined largely 
because of the admixture of cation and anion s functions 
in these bands. This leaves us with 14 distinct possi
bilities for the order of the valence and conduction 
bands at L. These are shown in Fig. 2. The diagrams are 
meant to indicate only the order of the bands and not 
necessarily their spacings. In the figure, we have indi
cated the band interactions through the k«P perturba
tion, discussed below, by vertical arrows for P both 
parallel and perpendicular to the [111] direction. The 
solid arrows indicate those interactions which we cal
culated from the symmetrized plane wave functions. 
The dotted arrows indicate those additional interac
tions allowed by symmetry. The forbidden gap is in
dicated by eg and the spin-orbit splittings of the Z3, 
and L3' states by A+ and A~", respectively. The symbol 
L6

+(Li) for example, indicates a state whose function, 
including spin, transforms as L&

+ but which when spin 
is neglected transforms as L\. The symbol LA)^

+(Ls) 
indicates the degenerate pair of states L^{Lz) and 
L^+(LS). We have not presented separately those cases 
where the L$+(Li) and L^~{L2

f) states lie between pairs 
of spin-orbit split states. For example, in Fig. 2(a), 
L6

+(Z,i) may also lie between Lf(Lz) and L^t^~(Lz)} 
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TABLE II. Estimated one-electron spin-orbit splittings for 
atomic states in Pb, S, Se and Te. 

Pb 

2.4 eV 
0.06 eV 

S 

0.06 eV 
0.002 eV 

Se 

0.35 eV 
0.015 eV 

Te 

0.9 eV 
0.03 eV 

p states 
d states 

and Lf(L2
;) may also lie between L$+(Lz) and L4)5

+(L3). 
Therefore, Figs. 2(a) and (b) actually each correspond 
to four possible arrangements; (c) and (d) each corre
spond to two possible arrangements; and (e) and (f) 
each correspond to only one possible arrangement giving 
14 arrangements in all. If we relax the restriction that Z,3 

be a valence-band state and L% a conduction-band state, 
we allow 14 additional arrangements which may be ob
tained simply by inverting the arrangements given in 
Fig. 2. 

Before proceeding with the experimental conse
quences of the various arrangements and a comparison 
with the available data, it would be interesting to ob
tain rough estimates of the spin-orbit splittings A+ and 
A~ for the three compounds, PbS, PbSe, and PbTe. I t 
was first pointed out by Elliott that estimates of the 
spin-orbit splitting of the band states may be obtained 
from the atomic spin-orbit splittings of the constitutent 
atoms.18 The single-electron atomic spin-orbit splittings 
for p and d states in Pb, S, Se, and Te have been esti
mated from the atomic energy levels of the neutral 
and singly ionized atoms.19 The values obtained are 
given in Table I I . If one assumes that in IV-VI com
pounds the electrons in the valence and conduction 
bands at L spend 40% of their time on the column IV 
atom and 60% of their time on the column VI atom one 
can obtain estimates of A+ and A~. The results are shown 
in Table I I I . The values for PbTe are in good agreement 
with those obtained by Johnson, Conklin, and Pratt.20 

I t should be noted however, that the numbers given in 
Table I I I are intended to be rough estimates only. 

II. MODELS FOR THE ENERGY BANDS IN 
PbS, PbSe, AND PbTe 

In order to obtain the experimental consequences of 
the various band arrangements of Fig. 2, we need to 
obtain the dispersion relations, E(k), in the vicinity of 
the L point from k*P perturbation theory. Including 
spin-orbit contributions, this perturbation takes the 
form,21 

ft 
3£' = —K"K, (1) 

m 

18 R. J. Elliott, Phys. Rev. 96, 266 (1954). See also, R. Braun-
stein and E. O. Kane, Phys. Chem. Solids 23, 1423 (1962). 

19 C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.), 
Circ. No. 467 (1949, 1952, and 1958). 

20 L. E. Johnson, J. B. Conklin and G. W. Pratt, Phys. Rev. 
Letters 11, 538 (1963). 

21 G. Dresselhaus, Phys. Rev. 100, 580 (1955). 

TABLE III. Estimated spin-orbit splittings of the Ls and L$f 

states in PbS, PbSe, and PbTe. 

PbS 

0.06 eV 
0.96 eV 

PbSe 

0.24 eV 
0.97 eV 

PbTe 

0.56 eV 
0.98 eV 

where 

* = P + ( f t / 4 w c 2 ) a X V F . (2) 

In Eq. (1) K is the wave vector of the state in question 
measured from the L point. That is K = k— 2w/a 
(1/2 1/2 1/2) where k is the reduced wave vector of the 
state. In addition to the standard spin-orbit contribu
tion to the k«P perturbation, included in Eq. (2) there 
will be other relativistic corrections which can be ob
tained from the one electron relativistic Hamiltonian in 
a straightforward manner.22 I t is expected that the con
tribution of these terms to the perturbation should be 
small23 and we neglect them here as comparising an un
necessary complication. The matrix elements of 3C' 
can be obtained in parameterized form from the trans
formation properties of «, where « transforms like the 
momentum operator P. For x parallel and perpendicular 
to the [111] direction the group theoretical selection 
rules are given in Table IV and the parameterized 
matrix elements of 3C' are displayed in Table V.16 In 
Table V, we have written K in the natural coordinate 
system for band states at the L point, [111] edge, with 
K*||[lll], Kx||[112], and %||[110]. Table V does not 
represent a secular determinant but is simply a con
venient way of displaying the relevant k»P matrix 
components. I t is interesting to consider what simpli
fications can be made in Table V by assuming various 
approximations. In general, the spin-orbit interaction 
mixes the states L6

+(Li) and L6
+(L3) and the states 

L6
_(L2

/) and L6~(L,/)- If we assume that this mixing is 
small, and that we can also neglect the spin-orbit and 
other relativistic corrections to Eq. (1), we obtain the 
result that, in Table V, jx = v= £=p = 0. Next, to obtain 
an estimate of the values of the remaining matrix ele
ments, let us assume that the matrix elements of the 
k» P perturbation are derived principally from the plane-
wave portion of the band functions, and that the 
valence- and conduction-band states in question are 
given approximately by the appropriate symmetry 
combinations of the six (1/2 1/2 3/2) plane waves. 
These symmetry combinations are given in Table VI. 
In the table, the symbol Qmn) represents the function 
exp[2ir/a(lx-\-my-\-nz)~], where x, y, and z are taken 
along the principal axes of the crystal, a and /3 represent 
spin functions quantized along [111]. The upper signs 
correspond to the + states and the lower signs to the — 

22 See for example, J. Callaway, Energy Band Theory (Academic 
Press Inc., New York, 1964), pp. 46-48. 

23 E. O. Kane, Phys. Chem. Solids 1, 249 (1956). 
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TABLE IV. Selection rules for momentum matrix elements at L. 

Li 

TTU^KLi 
TTlXLi 

£ 1 £2 

Li' 

\Lf (V) 

Lz 

+Lz' 

L\ L2 

L2 L\ 
Lz Lz 

L,' Li+ U+ Le+ 

Lz Lf Lf Lf 
L\-\-L<t Lf Lf Lf-\-Lf 

+Lz +Lf 

TABLE V. k*P matrix elements for (3/2 1/2 1/2) states.a 

a) \LC(W)P) \Lf(Lz')a) \Lf(Lz')l3) \U~ 

Lf 

Lb+ 
L,+ 

"(I .0) 

Lf 

LS 
Le+ 

\u 

Lf 

L,+ 
L±++L*+ 

+L&+ 

~(Lz')) 

{L,+(LM 

(U+(LM 

(L,+(Lz)a\ 

(U+(Lz)(3\ 

<U+(Lz)\ 

(L,+(Lz)\ 

OLKz 

fx(Kx—iKy) 

e(iCx—ifCy) 

&z 

1 
—0fe+2%) 
V2 

1 
0(Kx+tKy) 

V2 

Mfe+̂ '%) 

OLKz 

frz 

efe+^%) 

1 
d(KX — lKy) 

VL 

1 
—B(Kx—iKy) 
VI • 

8(Kx-{-iKy) 

VKZ 

0KZ 

p(Kx-\-tKy) 

1 
Xfe— My) 

VI 

1 
\(lCX—iKy) 

VI 

VKZ 

8(KX—iKy) 

p(KX — iKy) 

PKZ 

1 

VI 

1 
\{KX-\-tKy) 

VI 

VI 

1 
{(Kx+tKy) 

VI 

1 
—r)(Kx+iKy) 

V2 

1 ri(Kx—iKy) 
VI 

0 

yKz 

—^(nx—iKy) 
VI 

1 
U^X+iKy) 

VI 

1 —r}(Kx-\-iKy) 
VI 

1 
7}(Kx—iKy) 

VI 

yKZ 

0 

*K*||[ni] K.IICH23 ^HCiio]. 

TABLE VI. Symmetry combinations of plane waves for the valence and conduction bands at L. 

State Functiona 

U+(L1);LfT(L2
r) ( l /V6){(I /2 1/2 3/2)+ (3/2 1/2 I/2) + (l /2 3/2 I / 2 ) ± ( l / 2 1/2 3/2)±(3/2 1/2 l / 2 ) ± ( l / 2 3/2 1/2)}(a or 0) 

Le+(Lz);Lf(Lz') ( l / v
/ 6){( l /2 1/2 3/2)+co(3/2 1/2 I /2)+«*(I /2 3/2 l / 2 ) ± ( l / 2 1/2 3/2)±co(3/2 1/2 l/2)±a>*(l/2 3/2 1/2)}« 

(1/V6){(I/2 1/2 3/2)+co*(3/2 1/2 1/2)+w (1/2 3/2 1/2) ± ( 1 / 2 1/2 3/2)±a>*(3/2 1/2 1/2) ± « (1/2 3/2 1/2) }/3 

L,+{Lz)\Lf(Lz') ( l /Vl2){( I /2 1/2 3/2)(a+j8) + (3/2 1/2 1/2) («*«+«£)+(1/2 3/2 I/2)(«a+«*/3)=fc(l/2 1/2 3/2) (a+0) 

± ( 3 / 2 1/2 l/2)(«*a+w0)d=(l/2 3/2 l/2)(coa+co*/3)} 

L,+(Lz);Lf(Lzf) ( l / v
/ 12){( l /2 1/2 3 /2) (a -0) +(3 /2 1/2 I/2)(«*a-«j8) + (I/2 3/2 I/2)(«a-«*/3)=fc(l/2 1/2 3/2)(a-/3) 

± ( 3 / 2 1/2 l/2)(co*a-co/3)±(l/2 3/2 l/2)(coa-co*|8)} 

a co =exp (2iri/3). 

states. Using the functions of Table VI, we obtain the plane-wave functions are indicated by solid arrows. The 
following estimates of the remaining k»P matrix element additional matrix elements allowed generally by sym-
parameters in Table VI: metry are indicated by dashed arrows. I t will not be 

__ _/.&/ \ p necessary at this time to assume the approximate re-
a-P-y- Wm)Fu , ^ g u l t s g i v e n b y E q g < ^ a n d ^ I t i g o f i n t e r e s t ) h o w _ 

5=e=£=r) = d=\=:(fi/ni)Px, ever, to compare the values of P,, and P±, which one 
where can obtain by comparing the predictions of the models 

Pu — (JL)1/2(27r^/a) with the various experimental results, with those values 

P , = (aw*(2irft/a) ( 4 ) g l V e n ^ E q * ( 4 ) * 
X3J v J' Let us now develop a model for the valence- and 

In Fig. 2, the k«P interactions calculated from the conduction-band structure of PbTe. In ^-type PbTe it 
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appears from various measurements that the cyclotron 
mass for orbits in a plane perpendicular to the [111] di
rection is light, 0.02 m<mi<0.05 m? where m is the 
free-electron mass, and strongly dependent on carrier 
concentration. The longitudinal mass, however, is 
somewhat heavier, Wn^0.2 m, and relatively inde
pendent of carrier concentration.3 This immediately 
leads to a model in which the transverse effective mass is 

determined by a band close in energy to the valence 
band and the longitudinal effective mass is determined 
by a band somewhat more removed. Approximately the 
same thing appears to be true for the conduction band 
in n-type PbTe. The simplest model which includes 
these effects is a four band model shown in Fig. 3. 
This model leads to the following k«P secular deter
minant: 

fl2K2 

2m 
-+ev—€g~e 

h 

m 

ft fi 
0 — P U K Z —Pi(Kx+iKy) 

m m 

fl2K2 % fl 
€ —Pl(Kx—Uy) —Pl\Kz 

2m m m 

ft 
-PuKz ,—Pi(K9+iKv) 

m 

fl2K2 

2m 

—Pl'(Kx-iKy) —P\\fK£ 0 
m m 

fl2K2 

2m 

= 0. (5) 

Let us consider that ec and ev are large compared to the 
energy e and to eg. In this case, the four by four secular 
determinant may be approximated by 

fl2Kz
2 

2mn
c 

ft 
-PliKX—iKy) 

m 

ft ft2/c2
2 

—Pi(icx+iKy) eg— e 
m 2mu

v 

= 0, 

or 

ft2 

m-

where 
and 

/ ftW\/ nW \ 
-Pi2o<s2+%2H€ ) ( € + e ' + — > 
J \ 2w„c/\ 2wnV 

(6) 

(7) 

mfmuc=l+(2P'u
2/mec) (8) 

m/mnv=-l+(2Pu2/mev). (9) 

In Eqs. (6) and (7), we have assumed that the trans-

p." 1 

FIG. 3. Four-band model 
for PbTe. 

verse cyclotron mass in PbTe is small compared to the 
free-electron mass as indeed it is experimentally. The 
Fermi surface for a band of the form given by Eq. (7) 
is a nonellipsoidal figure of revolution about the KZ axis. 
Equation (7) actually represents a special case of the 
Cohen nonellipsoidal model.24-25 The theoretical vari
ation with carrier concentration of the cyclotron effec
tive masses and extremal cross-sectional areas of the 
Fermi surface for this model can now be obtained. The 
extremal cross-sectional area perpendicular to KZ, that 
is perpendicular to [111], can be obtained by setting 
KZ=0 in Eq. (7). One then obtains 

Al=ir(Kx
2+Ky

2) = Tr(m/hPx)
2e(6+eg). (10) 

The corresponding cyclotron effective mass is 

mr 

where 

ft* dAx / 2e\ 
= =Ml0 1 + - , (11) 

2ir de \ egJ 

m/mlo^2P1
2/meg (12) 

and mLQ is the value of the transverse cyclotron mass at 
the band edge. Combining Eqs. (10), (11), and (12), we 
can express the reciprocal of the period [a = (period) -1] 
of the de Haas-van Alphen and Shubnikov-de Haas 

24 M. H. Cohen, Phys. Rev. 121, 387 (1961); see also, D. Weiner, 
ibid. 125, 1226 (1962). 

25 The Cohen nonellipsoidal model has been applied to the 
valence band of PbTe by M. R. Ellett, K. F. Cuff, and C. D, 
Kuglin, Bull. Am. Phys. Soc. 8, 246 (1963). 
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oscillations in terms of the cyclotron effective mass: 

a = (ftc/2Te)Ai= (mc/Aefi)eg(mi0/m) 

x ( K M o ) 2 - i ) . (13) 
Equation (13) is valid for both the conduction and 
valence bands as are Eqs. (10) and (11) if e is measured 
from the appropriate band edge. The longitudinal ex
tremal cross-sectional area of the Fermi surface of the 
conduction band is given by 

^„c=4(2w1oA2)1 /2(2w I I
cA2)1 /2(e/€,)1 /2€ 

(v+y)l/2 

X {r,K(s)+(y-n)E(s)}, (14) 
3 7 

where rj = (e+e0)/e, s= [ Y / ( * ? + T ) ] 1 / 2 > y=mic/mu
v, and 

K(s) and E(s) are complete elliptic integrals. For e/eg 

small, we obtain 

/2ml0\
1/2/2mnc\1/2/ e \ 1 / 2 

X e f l H - - — + • • • ) . (15) 
I 8e+eff J 

The corresponding cyclotron effective mass is 

/ € V /2 

muo
c= (ml0mnc)1/2l H — J 

x{1+iK)i+"i (16) 
The carrier concentration for the conduction band is 
given by 

4 / w i 0 \ / 2 w „ c € \ 3 / 2 J / y\e) 

~37r2W„cA fi* ) I \ 5 / e J ' 

The corresponding expressions for the valence band can 
be obtained by replacing mu

c by mu
v and y by y~l in 

Eqs. (14) through (17) if e is measured with respect to 
the appropriate band edge. Expressions can be obtained 
from Eq. (7) for the extremal cross-sectional area of the 
Fermi surface perpendicular to the magnetic field and 
the corresponding cyclotron mass for arbitrary orienta
tions of the field with respect to the crystal axes. These 
expressions, however, are reasonably cumbersome. A 
comparison of the predictions of Eqs. (13) through (17) 
with experiment is sufficient to determine the band 
parameters involved. 

Finally, let us consider the g factor for the two-band 
system of Eq. (6). Cohen and Blount26 have shown that 
the g factor is directly related to the reciprocal cyclotron 

mass, for the magnetic field in a given direction, if the 
appropriate g factor and mass for the band in question 
are determined by an interaction with one other band 
only. In the case of the present model, for the magnetic 
field along KZ, that is, parallel to the [111] direction, we 
can use the results of Lax, Mavroides, Zeiger, and 
Keyes27 for InSb to obtain 

e(e+eg)^(2Pi
2/m){(n+i)h^0^oH}, (18) 

where uo—eH/tnc, ^0=efi/2mc and m is still the free-
electron mass. From Eq. (18) and the fact that j30H 
= l^coo, we observe that the spin splitting of a Landau 
state is equal to the separation between Landau states 
at the same energy. For large n and small H, the g factor 
and cyclotron mass can be defined by27 

(eh/mic)H= e»t—€,_it (19) 
and 

giiPoH=ent — en*. (20) 

Equations (18) and (19) give 

ml=m(eg+2€)/(2Pl
2/m) (21) 

in agreement with Eqs. (11) and (12). For the g factor, 
Eqs. (18) and (20) give 

*„ = ±4(Px 2 /*0 / (6 ,+2€) . (22) 

Consequently, we find 

gumx/m=zL2 (23) 

which is the result obtained by Cohen and Blount.26 

In Eqs. (10) through (23), we have obtained the pre
dictions of the Cohen two-band nonellipsoidal model 
[Eqs. (6) and (7)] as applied to the valence and con
duction bands of PbTe. Since we expect that actually 
there will be six bands in the vicinity of the forbidden 
gap at L, the situation in PbTe is likely to be more 
complicated than this simple two-band model or the 
four-band model of Fig. 3. I t is therefore of interest to 
consider the possibility of departures from the two-band 
model. Since all of the expressions except Eq. (23) con
tain parameters, which are adjusted in order to obtain 
agreement between theory and experiment, departures 
from the two-band model can be absorbed, in part, in 
these parameters and can consequently be obscured. In 
fact, the available transport data on PbTe is in agree
ment with the two-band model, within experimental 
error, for a particular choice of parameters. In order to 
obtain a crucial test of the two-band model, we need 
simultaneous measurements of mi and gu or of the pro
duct gnMi. This can then be compared to Eq. (23) 
which contains no adjustable parameters. I t is there
fore of interest to obtain an expression for gx {mi in a more 
complicated situation than the two-band model. Let us 
consider, for example, a simple three-band system with 

27 B. Lax, J. G. Mavroides, H. J. Zeiger, and R. J. Keyes, 
26 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960). Phys. Rev. 122, 31 (1961). 



A828 J . O. D I M M O C K A N D G. B . W R I G H T 

K 2 = 0 for which in the absence of a magnetic field we 
have 

ft t ft 
-—Pl(KX—iliy) —Pl(KX+iKy) 
m m 

'PI(KX+WV) —eg—e = 0. (24) 

In Eq. (24) we have chosen the phases of the two trans
verse momentum matrix elements to be different in 
accordance with the results obtained in Table V from 
symmetry considerations. Because of this difference, in 
the presence of a magnetic field parallel to KZ, Eq. (24) 
yields 

e(e+ 6,) ( € + ec) = ( € + 6,) (2P1
f2/m) { (»+J)fto>o=F/3off} 

+ (e+ec)(2Pl>/in){(n+±)tia>o±PoH}. (25) 

In this case the spin splitting of a Landau state is not 
equal to the separation between Landau states and, in
stead of Eq. (23), we obtain 

gntnjL f(e+€c)PI
2-(e+e,)P/2l 

- = ± 2 | [ (26) 
m ( e + e c ) P 1

2 + ( € + e , ) P / 2 

in the three-band model. In the limit of small e Eq. (26) 
reduces to 

gntni ec—eg 
= ± 2 -

m €c
f+eff 

where 
; ' = , P 2 / P / 2 JPl*/Pi 

(27) 

(28) 

The inclusion of more bands in the model yields a more 
complicated expression for gwmjm. The results for 
small e, however, reduce to equations analogous to 
Eqs. (27) and (28). 

Consider now the transverse g factor for H per
pendicular to KZ. This deviates from gx=2 only if the 
state in question has nonvanishing momentum matrix 
elements with some other state for both P parallel to 
KZ and for P perpendicular to KZ.27'28 In the four-band 
model of Fig. 3, no state is connected to any other by 
both Pi and Pu so that for this model and for its ap
proximation, the two-band model, the transverse g fac
tors of all states are equal to 2. This is actually a more 
general property of the system under consideration. 
From the selection rules for the momentum matrix ele
ments at L given in Table IV we see that the only in
teraction which is allowed for both Px and Pu is 
Z6

+ <-» L<r> Therefore, the transverse g factors for the 
£4,5 states at the L point are equal to 2 from symmetry 

considerations alone. If we neglect the spin-orbit mix
ing between the LQ(Lz) and L§{Li) states and also the 
spin-orbit and other relativistic corrections to Eq. (1) 
we find that all transverse g factors are equal to 2. 

Therefore, measurements of gx and of the product 
migu provide the most crucial tests of models of the band 
edge structure in PbTe. This will also be true for PbS 
and PbSe. To our knowledge, there has been no meas
urement of gi for these compounds. The value of migu 
for PbTe has been inferred from measurements of the 
Shubnikov-de Haas oscillatory magnetoresistance3,25 

and appears to be in disagreement with the prediction, 
Eq. (23), of the simple four-band model of Fig. 3. This 
is discussed in more detail in the next section along with 
a comparison of the remaining data on PbTe with the 
two-band model. The available data on PbS and PbSe 
are also compared with tentative models of the band 
structure in these compounds. 

III. COMPARISON WITH EXPERIMENT 

The two-band model appears to be in good agree
ment with the available information on the transport 
properties of the valence and conduction band extrema 
in PbTe with the possible exception of the spin splitting 
of the Landau levels. For this reason, it is felt that a 
comparison with a more complicated model is not 
warranted at present. 

The two-band model, discussed above, predicts that 
a plot of the reciprocal of the period of the Shubnikov-de 
Haas oscillations a against the square of the cyclotron 
mass mx for a magnetic field along the [111] direction, 
should yield a straight line [see Eq. (13)]. The com
parison of theory and experiment3 gives the following 
values for the forbidden gap and transverse valence-
band effective mass at the band extrema in PbTe at 
4.2°K: e^0.Q7 eV and mx<pz0.016m. Consideration of 
the multiband model yields a more complicated result. 
In this case, the plot of a versus mx is a straight line 
only for e<^€g. The data are not sufficiently accurate to 
indicate any deviation from a straight line. In the multi-
band model for e<Keg we obtain Eq. (13) but with eg 

replaced by an effective gap. For reasonable spacing of 
the bands in the multiband model eg

eii differs from eg 

by no more than 20% which is less than the error al
ready present in the determination of eg from a com
parison of the two-band model and experiment. 

If we estimate the ratio of longitudinal valence- and 
conduction-band masses to be y~1 = mn

v/muc^^1.5, a 
comparison of Eq. (15) with experiment3 yields 
m n ^ O . 1 8 m. Using these values for the band param
eters, we can obtain mx as a function of concentration 
from Eqs. (17) and (l l) .2 9 The result is in good agree
ment with the data of Cuff, Ellett, and Kuglin, except 
at their highest concentration. Using Eq. (12) and the 

»L, M, Roth, Phys. Rev, 118, 1534 (1960), 

29 It is interesting to observe that Eqs. (11) and (17) yield a 
dependence of mx on N which can be approximated by mx~N* 
over a considerable range of iV, 
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values of eg and niio obtained above we find that for 
PbTe at 4.2°K, 2Pj.2/m~4.5 eV. The value obtained 
from the nearly-free-electron model, Eq. (4), is 2PL

2/m 
= 9.95 eV. Considering the approximations made, the 
agreement between these two numbers is not unsatis
factory. An estimate of Pn can not be obtained since 
we do not know the values of ec or ev in Eqs. (8) and (9). 

One can show26 that the spin splitting of the Landau 
levels introduces a multiplicative factor of cos(rTgtnc*/ 
2m) in the amplitude of the de Haas-van Alphen oscil
lations, and presumably also in the Shubnikov-de 
Haas oscillations. Therefore, although there are no 
direct measurements of the g factor in PbTe, one can 
obtain an estimate of the product m*g by comparing 
the amplitude of the fundamental oscillations (r=l) 
with that of the second harmonic ( r=2) . The observa
tion that the fundamental vanishes in favor of the 
second harmonic for H parallel to [111] can be ac
counted for if 

gnmx/mc^(2n+l) (29) 

where n is an integer. This situation seems to exist in 
the valence band of PbTe,3,30 and disagrees completely 
with the prediction of the two-band model, Eq. (23). 
I t is therefore necessary to consider more complicated 
models of the valence and conduction band structure of 
PbTe. The simple two-band model which we have been 
examining can be considered as a simple approximation 
to the band arrangements shown in Figs. 2(a) through 
(d). A consideration of Eq. (27) shows that a value of 
g n W i / w = ± l , (€c=+3eg) is consistent with the ar
rangements shown in Figs. 2(b), (c), and (d) and not 
with Fig. 2(a) whereas a value of gumi/m=zL3, 
(€</=•— 5eg) is consistent only with Fig. 2(a). I t is ob
vious, therefore, that a direct measurement of gu in 
^-type PbTe would greatly aid in the determination of 
the band structure of this compound. 

The available information on the conduction and 
valence bands in PbSe is not as complete as that for 
PbTe. Consequently, we can offer only a tentative 
model for the band structure in this compound. Ellett 
and Cuff4 have reported the observation of Shubnikov-
de Haas oscillatory magnetoresistance in both n- and 
^-type PbSe. I t appears from their work that the 
valence- and conduction-band extrema in PbSe are 
quite similar to those of PbTe. In ^-type PbSe, for 
example, at a concentration of 2X1018 cm - 3 they report 
a transverse cyclotron mass of 0.047±0.005 m, to be 
compared with about 0.035 m in PbTe at the same con
centration.3 The anisotropies for these two compounds, 
however, are rather different being 2.0±0.2 in PbSe and 
7 ± 1 in PbTe at this concentration. This indicates that, 
perhaps, the four-band model of Fig. 3 is applicable to 
PbSe as well. However, in this case, since the mass 
anisotropy is not large, it appears that ec and ev are not 
much larger than ea such that the two band model is not 

30 Y. Shapira and B. Lax, Phys. Letters 7, 133 (1963). 

a good approximation in PbSe. Further evidence4 of this 
more complicated situation is that whereas mi increases 
markedly with increasing concentration the anisotropy 
decreases only slightly indicating that the longitudinal 
mass also increases with concentration. The Fermi 
energy in PbSe at concentrations of 1018-1019 cm"3 must 
be comparable not only with eg, as was the case in 
PbTe, but also with ec and ev. We, therefore, tentatively 
conclude that in PbSe there should exist multiple 
valence and conduction bands close to the respective 
band edges. There is some evidence of this also from 
optical measurements.12 

The conduction band in PbS appears to be even more 
isotropic than that of PbSe. The number of carriers cal
culated from the observed cross-sectional areas of the 
Fermi surface is only about one-quarter of that deter
mined from Hall measurements.2,5 This indicates that 
the conduction band edge in PbS also occurs at the L 
point ([111] edge). The observed isotropic mass can 
be accounted for if one considers multiple valence and 
conduction bands. I t seems, therefore, that the valence-
and conduction-band structure of PbS is qualitatively 
the same as that of PbSe and PbTe and that a multiple-
band model is necessary to explain the data. 

IV. CONCLUSION 

All of the existing data on the conduction and valence 
bands in PbS, PbSe, and PbTe are consistent with a 
model for the band structure of these compounds in 
which the principal valence- and conduction-band 
extrema occur at the L point ([111] edge) of the 
Brillouin zone. From a nearly-free-electron picture, we 
found that there should be six bands in the vicinity of 
the forbidden gap at L and that three of these are con
duction bands and three are valence bands. A simple 
four-band model was proposed for the valence and con
duction bands in PbTe. This was further simplified to a 
two-band model which is a special case of the Cohen 
nonellipsoidal model for the band structure in bismuth. 
This two-band model was found to be in good agree
ment with most of the transport data for PbTe. How
ever, the g factor for the valence band of PbTe deduced 
from the Shubnikov-de Haas oscillations, is in definite 
disagreement with the predictions of either the two-
or four-band models and it is necessary to consider all 
six bands in order to obtain complete agreement with 
experiment. I t appears that the band-edge structure in 
PbSe is quite similar to that of PbTe and that the simple 
four-band model proposed for PbTe may be applicable 
to PbSe as well. However, in this case, the energy spac-
ings of all four bands are comparable to the Fermi 
energy such that in PbSe the four-band model may not 
be approximated by the Cohen two-band model. We, 
therefore, tentatively conclude that in PbSe there should 
be at least four closely spaced bands comprising the 
conduction and valence band edges. The situation in 
PbS also appears complicated. Although presently 
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available evidence is not conclusive, it appears that the 
band edge structure of PbS may be similar to that of 
PbSe and PbTe with only a difference in the spacing of 
the various valence and conduction bands. 

In conclusion, we should like to indicate what in
formation would be most useful in further determining 
the details of the valence and conduction bands in PbS, 
PbSe, and PbTe. Obviously, more complete and de
tailed information on the cyclotron masses and extremal 
cross-sectional areas of the Fermi surface of these com
pounds as a function of concentration would enable 
one to obtain a more critical comparison with the pro
posed band structure models. Also, of course, more 
complete optical and magneto-optical data would be 
very useful. One of the principal results of the present 
investigation is, however, that measurements of the g 
factor in these compounds would provide rather crucial 
information on their band structures. We saw, using 
symmetry arguments and a minimum of assumptions, 
that gi, the g factor for a (111) band for a magnetic 
field perpendicular to the [111] direction, is equal to 2. 
The observation of a large deviation from 2 would indi
cate that the band being observed is an L6 band and in 
addition that relativistic effects are important in the 
k«P perturbation. We also saw that the simple two-
and four-band models proposed for PbTe and PbSe 
made definite predictions for gn. A deviation from this 
prediction seems to occur in PbTe and probably also 
occurs in PbSe. A direct measurement of gu in these 
compounds would also provide useful information. More 
complete data is necessary before a detailed comparison 
can be made. 

Note added in proof. After this paper was submitted, 
the authors received an unpublished report of a pseudo-
potential calculation for PbTe by L. Kleinman and P. J. 
Lin. They obtain essentially the band order shown in 
our Fig. 2 (d) and state that the spin orbit mixing of the 
Lf~ states is large. This means that the dotted inter
actions shown in Fig. 2 should be important. This also 
indicates that our simple model for PbTe, Fig. 3, may 
be inadequate in that a longitudinal interaction between 
the valence and conduction bands should be included. 
We should also mention that interband magneto-
absorption studies of epitaxial PbS, PbSe, and PbTe 
have recently been carried out by Mitchell, Palik, and 
Zemel. They obtain a gap in PbTe at 4.2°K of 0.19 eV 
in apparent disagreement with our estimate of e0 = 0.07 
eV based on a comparison of the two band model with 
the data of Cuff, Kuglin, and Ellett.3 Although the value 
of €ff=0.07 eV gives the best fit to this data, a value as 
large as eff = 0.16 eV and Wj.o= 0.022m is consistent with 
the data within the quoted experimental accuracy. The 
authors would like to thank D. L. Mitchell, E. D. Palik, 
and J. N. Zemel, and L. Kleinman, and P. J. Lin for 
sending us their results prior to publication. 
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